
Microcontroller Tutorial 1

www.build-electronic-circuits.com

Building
A Microcontroller Board
From Scratch

 B
y:

 Ø
yv

in
d

N
yd

al
 D

ah
l

Learn to build a microcontroller board with USB

that you can make at home using

standard hobby tools.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 2

www.build-electronic-circuits.com

Copyright (C) Dahl Technology

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 3

www.build-electronic-circuits.com

This is a five-part microcontroller tutorial series that I wrote for my blog
to show what it takes to build a microcontroller circuit from scratch.

Throughout the tutorial, I will show you the steps you need to take to
build your very own microcontroller circuit. You will then be able to
use this circuit to build a blinking lamp, a robot, an automatic cat-fee-
der or whatever idea you want to build.

My goal is to make a circuit that is as simple as possible, and which
requires no external programmers or debuggers. You should be able
to just plug it into a USB port on your computer and program it.

I have not planned this out in any way. I am just going to build it, and
write about the process. Hopefully we’ll end up with a usable circuit.

In the part of the microcontroller tutorial, I’ll start from scratch. I want
to explain what a microcontroller is, in very simple terms. I want to
get everyone on board before we dive into making the circuit.

At the end, you’ll learn to build this:

INTRODUCTION

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 4

www.build-electronic-circuits.com

Part 1:
What Is A Microcontroller?
I loved learning about microcontrollers when I was studying. It meant I could
start taking advantage of microcontrollers in my electronics projects. It felt
like with that this knowledge, I was unstoppable. I could build anything!

And it is true. Microcontrollers are powerful components. They let you
write programs to control your electronics. Combine this knowledge with
building your own circuit
boards, and you can make
amazing things.

By using a microcontroller
in your project you will
have access to a vast
amount of functionality
from the tips of your
(programming) fingers.

You can think of a
microcontroller like a tiny computer. You can connect things, like a small
display, some buttons, a motor and some sensors. And you can put programs
onto it and run them.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 5

www.build-electronic-circuits.com

What Can You Do With A
Microcontroller?
Oh, where do I begin?

There are so many things you can do with a microcontroller. You could build
a robot. Or an MP3-player. Or a cellphone. Or a door-lock that unlocks your
door automatically when you enter a code on your smartphone.

The possibilities are endless!

Let’s say you want to build a robot. You can
connect an infrared sensor to use as vision
for the robot. And you can connect a motor
with some wheels to make it move.

Now, all you have to do is to make a pro-
gram that reads from the infrared sensor
and controls the motor. In your code, you
can make sure the robot stops if it sees so-
mething in front of it, and make it turn to
either left or right before continuing.

When you know how to build
microcontroller circuits, there are almost no
limits to what you can do! And by following
this microcontroller tutorial, you’ll learn to
use microcontrollers in your own projects.

Recyclomaten: A recycling
machine controlled by a
microcontroller circuit

I designed.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 6

www.build-electronic-circuits.com

A microcontroller has several pins. The simplest ones have around
8 pins, while more advanced microcontrollers can have hundreds of
pins. Most of these pins are so-called input and output pins. And by
using these pins, the microcontroller can interact with the outside
world.

The microcontroller doesn’t do anything by itself. You need to tell it
what to do, by making a program that you load into it. This is called
programming the microcontroller.

From the program you write, you can control the input and output
pins. So if you connect for example a Light-Emitting Diode (LED),
you will be able to switch the light on and off from your program.

An input pin could be used to check if a button connected to it has
been pushed. Or to read the temperature from a temperature sensor.

In your program, you will be able to make decisions based on the
input. So you can make a program that will start to blink a light if the
temperature goes above or under a certain level.

Put this into your beer-brewing room and you will get a visual alarm
if the temperature for brewing is not right.

A Closer Look At A Microcontroller

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/what-is-an-led/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 7

www.build-electronic-circuits.com

Programming a Microcontroller
Programming a microcontroller can seem a bit tricky because there
are many confusing choices to make. I remember how I felt in the
beginning. With all the available compilers, IDE’s, programmers and
programming methods – no wonder you get confused!

So let’s break it down. These are the three steps necessary to program
a microcontroller:

1. Write code
2. Compile your code to machine code
3. Upload the machine code to your microcontroller

What exactly to do at each step varies from microcontroller to
microcontroller. But don’t worry – I’ll be guiding you through the
exact steps needed when we get there.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 8

www.build-electronic-circuits.com

It’s time to find a microcontroller and get to work. Finding a
microcontroller isn’t necessarily as easy as you would like it to be.
There are probably 58 billion different ones.

Ok, maybe a little less.

But I have some tips up my sleeve that will make it easier to choose.
That’s what you’ll learn in the next part of this tutorial.

If you have any questions about what you’ve learned in this part,
head on over to the following page and write your question in the
comment section:

https://build-electronic-circuits.com/microcontroller-tutorial-part1

Next Step

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/microcontroller-tutorial-part1/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 9

www.build-electronic-circuits.com

Part 2:
How To
Choose a
Microcontroller
In the previous part of the
microcontroller tutorial series, you
learned the basics of microcontrollers.
The goal of this tutorial is to show how
to build a microcontroller circuit that
is as simple as possible. So simple that
you can make it at home.

Next up in this tutorial is choosing a microcontroller. This can be
confusing! At least if you don’t know what you are doing. But after
reading this second part, I hope it will become clear.

The Differences Between Different
Microcontrollers

There are a gazillion different microcontrollers. But what is really
important for your project?

When you have the answer to this questions – everything becomes
much simpler. So let’s look at some of the main differences between
microcontrollers.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 10

www.build-electronic-circuits.com

Number of bits

You can find 8-bit, 16-bit and 32-bit microcontrollers. These numbers
refer to the size of the databus . In simple and practical terms, a larger
databus can do more heavy calculations.

The 8-bit microcontroller is the most commonly used by hobbyists. In
general, the 8-bit microcontroller has fewer pins, so that it’s easier to
solder. And it is usually easier to program too.

In this tutorial, we’ll be using an 8-bit microcontroller.

Memory, IO and peripherals

Different microcontrollers have different amount of memory, number
of Input/Output (IO) pins and peripherals.

Peripherals are extra functions added to the microcontroller. It
could be Analog-to-Digital conversion, USB interface, PWM, or SPI
communication. If you are not familiar with these terms, don’t worry
– you’ll learn them when you need them.

AVR vs PIC

The two most common microcontroller-brands for hobbyists are
probably AVR from Atmel and PIC from Microchip. AVR is the type of
microcontroller used on the Arduino.

I have used AVR a lot and I think it’s a really good choice of
microcontroller. The PIC is said to be really good too, but I have been
so happy with the AVR that I never actually tried the PIC.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/what-is-arduino/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 11

www.build-electronic-circuits.com

Finding a Microcontroller For
Your Circuit
Now it’s time to start making some decisions. Should you go for the
AVR from Atmel or the PIC from Microchip?

Since I have used the AVR many times before, I’m just going to go
for AVR again. I know this will save me time and energy. This is very
common among electronics designers – to make their decision based
on what they have experience with.

Writing Down Our Requirements

Ok, we have narrowed it down to 8-bit AVR chips. What else do we
need?

My goal with this, is to build a microcontroller circuit that is as simple
as possible. I want a simple circuit that I can plug into the USB of my
computer to program it. So these will be our requirements:

•	 Programmable through USB
•	 As few components as possible
•	 Possible to solder at home

There are several ways to program the microcontroller through USB.

A common method, used on some Arduino boards, is to add a “USB
to serial”-chip to the circuit. The problem with this approach is that it
increases the number of components on the board.

Another method, is to find a microcontroller that has USB interface
integrated onto it. Since this matches our wish for fewer components,
we’ll go for this option. Specifically, we need a USB device interface.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 12

www.build-electronic-circuits.com

And we have to make sure the microcontroller comes pre-loaded
with a bootloader that makes it possible to program it through USB.

 The last requirement is that it should be possible to solder the circuit
at home. So we want to find a microcontroller with as few pins as
possible. Less pins = easier to solder.

Using the Microcontroller Selector

Atmel have made a very useful tool for selecting a microcontroller
(find it here).

All we got to do is to insert out requirements:

•	 In the «CPU»-field – we select only the «AVR 8-bit»
•	 In the «USB»-field – we select only the ones with «USB device»

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
http://(find it here).http://www.atmel.com/selector.html#(actives:!(81041,8238,8394,8362,8282,8431,8300,8358,8392,8378,8445,8236,8449,8474,8248,8264,8447,8256,8254,8286,8462,8429,8458,8466,8400,8302,8278),data:(area:'',category:'34864',pm:!((i:81041,v:!(1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79)),(i:8238,v:!(0,19)),(i:8394,v:!(0,27)),(i:8362,v:!(2,49)),(i:8282,v:!(0,2,3,4,5,6,7,8,9,10,11,12)),(i:8431,v:!(1,42)),(i:8300,v:!(1,9)),(i:8358,v:!(2,75)),(i:8392,v:!(0,1)),(i:8378,v:0),(i:8445,v:!(1,4,5,6,7,9)),(i:8236,v:!(0,36)),(i:8449,v:!(1,11)),(i:8474,v:!(0)),(i:8248,v:!(0,1)),(i:8264,v:!(0,5)),(i:8447,v:!(0,1)),(i:8256,v:!(1,2,3,4)),(i:8254,v:!(3,18)),(i:8286,v:!(0,3)),(i:8462,v:!(0,10)),(i:8429,v:!(1,11)),(i:8458,v:!(0,8)),(i:8466,v:!(1,2,3,4,5)),(i:8400,v:!(0,20)),(i:8302,v:!(0,1,2)),(i:8278,v:!(0,1,2))),view:list),sc:1)

Microcontroller Tutorial 13

www.build-electronic-circuits.com

Then, we sort our results by pin count.

We get 5 results that has 32 pins. None with less pins. So we’ll narrow
it down to these 5 options.

But there is one more requirement that we need to take into account:
For us to be able to program the chip through USB, the chip needs
to be pre-programmed with a bootloader from the factory. The
bootloader is called DFU Bootloader.

Information on which ones are pre-programmed with the DFU
bootloader was a bit hidden. But I found a document which lists the
pre-programmed devices on the right. From this document, we can
see that the Atmega8U2 does NOT have the bootloader
pre-programmed.

So that leaves us with 4 options.

Making a Decision

Since all of these seem to fit our requirements, it doesn’t matter which
one we choose. So let’s choose the one that has the most amount of
flash. More flash means that we can store bigger programs on the
chip.

Atmega32U2 with 32kB of flash is the winner!

Before we move on, it’s a good idea to check that the chip is available
in our preferred store. I usually buy all my stuff online from one of
these stores.

And at the moment, I can see that the chip is available several places.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
http://www.atmel.com/Images/doc7618.pdf
https://www.build-electronic-circuits.com/buy-electronic-components/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/buy-electronic-components/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 14

www.build-electronic-circuits.com

Next Step
Now we have chosen a microcontroller and are ready to start desig-
ning our circuit. Because of the microcontroller we chose, this might
turn out to be a pretty simple task. But we’ll see about that in the
next part…

If you have any questions about what you’ve learned in this part,
head on over to the following page and write your question in the
comment section:

https://build-electronic-circuits.com/microcontroller-tutorial-part2

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/microcontroller-tutorial-part2/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 15

www.build-electronic-circuits.com

Part 3:
How To Design a
Microcontroller Circuit
In the first part of this tutorial we looked at what a microcontroller is.
We saw that a microcontroller is like a small computer, and that you
can use it to build amazing things like cell phones or even your own
handheld game-console.

Then in part two, we looked at different types of microcontrollers, and
we chose one for our purpose. We chose the ATmega32U2 because
we can program it through USB and it is reasonably easy to solder at
home.

Now, we are going to design our circuit from scratch. So we need to
design a circuit diagram with all the components and connections
necessary to make our circuit work.

Let’s build this thing!

What Do We Need?

How to decide which components to connect to our microcontroller?

Let’s think about it. We need power for the chip, otherwise it won’t
work. We need a USB connection, because we are going to program
it through USB. And we need some physical pins where we can easily
connect things to our circuit and test it, like an LED.

So, we need:

•	 Power
•	 USB Connection
•	 Pin Connections

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
http://www.microchip.com/wwwproducts/en/ATMEGA32U2

Microcontroller Tutorial 16

www.build-electronic-circuits.com

The Datasheet

To figure out exactly which components we need, and how to
connect them, we look in the datasheet of the chip. The datasheet is
a comprehensive document with a lot of technical data on how the
microcontroller works and how you can control different parts of it.

If you are not used to reading a datasheet, it might feel a bit
overwhelming. But after looking at a few datasheets, you will sooner
or later start to understand how it is laid out.

It is not necessary to read the datasheet from start to the end. You
only need to read the parts that are interesting for what you want to
make. So if you want to make a timer with your microcontroller, you
read the timer section. If you want to use the UART, you look up the
UART section.

One thing to notice – in the datasheet of the ATmega32U2, the table
of contents is placed at the end.

Power and USB

We can choose if we want the circuit to be powered by the USB cable
or with an extra power cable.

To keep things simple and with less components, let’s make this a USB
powered device. This means it will only work when it is connected to
the USB.

Which components do we need to do this? To find out, let’s look in
the USB-section of the datasheet, and see what we find.

USB Module Powering Options

From the table of contents at the end of the datasheet, we find

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
http://www.atmel.com/Images/doc7799.pdf

Microcontroller Tutorial 17

www.build-electronic-circuits.com

How to connect the ATmega32U2 as a USB powered 5V device.
(Source:Atmel.com)

From Design guidelines on page 189 we learn that the resistors should
be 22 Ohm resistors, and that it is also highly recommended to have a
10 μF capacitor on the VBUS line. So let’s add the 10μF capacitor too.

Crystal

In the image above, we can see that there is also a crystal and two
capacitors connected to the XTAL1 and XTAL2 pins. Why is this?

A microcontroller needs a clock to work. Most microcontrollers have
an internal RC-oscillator that creates a clock signal. And so do the
ATmega32U2. But the thing is that the USB part of the microcontroller
is not able to run from that internal clock. So to make USB work, we
need an external crystal.

a section called USB Module Powering Options at page 186. Here we
can find the following figure that show us how to connect the USB
section of the chip to make it powered by USB.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 18

www.build-electronic-circuits.com

We want to be able to connect stuff
to our microcontroller circuit. So,
we’ll add 16 physical pins that are
connected to the I/O pins PB0-PB7
and PD0-PD7. This makes it easy to
connect something to our circuit.

Another thing we should add, is an
LED. This way, we can easily check
if the circuit and our code works. To
control the current through the LED,
we also add a current limiting resistor
in series with it.

Pin Connections and LED

Push-Button for Reset

It is very common to have a reset button on a microcontroller circuit.
This makes it easy to reset the microcontroller without having to
unplug the USB cable. From page 47 of the datasheet we can read:

“The MCU is reset when a low level is
present on the RESET pin for longer
than the minimum pulse length”.

So we need to make sure the reset pin
is normally pulled high, and only pull it
low when the reset button is pushed.

Exactly what kind of crystal we need, we can find at page 30 in the
datasheet. Here, the capacitor values are also listed.

A standard pushbutton
 with four legs

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/current-limiting-resistor/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 19

www.build-electronic-circuits.com

To do this, we use something called a pull-up resistor . This is a resistor
connected between the reset pin and VCC (5 volt) – which “pulls” the
reset pin high. We connect the reset button in a way so that the reset
pin is connected to ground (0 volt) if the button is pushed.

Which value should this resistor have? A good value is around
10k Ohm.

The Complete Microcontroller Circuit
Diagram
If we combine all the parts that we’ve discussed above, we’ll end up
with the following circuit diagram.

You’ll notice that some parts seem to not be connected to the rest.
But, when there is a name on a wire, it means this wire is connected
to all the other wires with the same name.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 20

www.build-electronic-circuits.com

Next Step
It’s all coming together now. All we have to do now is to create a
circuit board. So that’s exactly what we’ll do in the next part of the
tutorial.

If you have any questions about what you’ve learned in this part,
head on over to the following page and write your question in the
comment section:

https://build-electronic-circuits.com/microcontroller-tutorial-part3

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/microcontroller-tutorial-part3/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 21

www.build-electronic-circuits.com

Part 4:
Creating a Circuit Board
Let’s get ready to design the circuit board!

We are now in the fourth part of the microcontroller tutorial. We
have a microcontroller circuit diagram ready. And it’s time to make
a circuit board.

I love this part. This is the “magical” step that takes the idea we
started with and turns it into something real.

But let’s recap. So far we have learned:

•	 Part 1: What is a microcontroller?
•	 Part 2: How to choose your microcontroller?
•	 Part 3: How to design a circuit diagram for your microcontroller?

In this part we are going to create a circuit board for our circuit, then
get this board created in one way or another. This can be done in
several ways, as we’ll see later.

To design our circuit board we’ll use Cadsoft Eagle. It’s available in a
free version and works on Windows, Mac and Linux.

Designing Schematics For Our
Microcontroller Circuit
The first thing we need to do, is to put our schematic design into
Eagle’s schematic editor. If you are not familiar with this process,
check out this tutorial: How to create schematics with Eagle

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/eagle-cad/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/schematic-drawing/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 22

www.build-electronic-circuits.com

The ATmega32U2 microcontroller, is not in Eagle’s default library. I
could have designed my own custom component, but to save time
I used a library that I found here: https://github.com/civanovici/
roduino/tree/master/eagle/eagleLibrary

For the USB connector, I used one from Sparkfun’s library here:
https://github.com/sparkfun/SparkFun-Eagle-Libraries

In the previous part of this microcontroller tutorial, we decided on
which components to use and how to connect them. Here is the
circuit diagram we ended up with:

Designing Our
Board Layout
The next step is to design the board.

In Eagle, we can click on the «Board»
button in the toolbar to open the
design editor. If no board design
exists for your schematics, you will
be asked if you want to create one.

Answer «Yes» to this.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://github.com/civanovici/roduino/tree/master/eagle/eagleLibrary
https://github.com/civanovici/roduino/tree/master/eagle/eagleLibrary
https://github.com/sparkfun/SparkFun-Eagle-Libraries

Microcontroller Tutorial 23

www.build-electronic-circuits.com

I always start out by defining my board size. I know that I can get
really cheap prototypes if I stick to 5cm x 5cm (1.9685 in x 1.9685 in),
so I will set my board size to this.

Now it’s time to place the components onto the board and draw the
connections. In this design, I wanted to draw only on one side, so
that it would be easier to mill or etch the board – just in case I wanted
to do this later.

If you’re not familiar with drawing a board layout, check out my PCB
design tutorial here: https://www.build-electronic-circuits.com/pcb-
design-tutorial/

The finished board layout for this project

You can download the finished design here: Microcontroller-tutorial-
files.zip

Making the Board
There are three main ways of making a board from an Eagle design;
etching, CNC milling or ordering from a prototype manufacturer.
Earlier, I’ve written an overview of the three methods.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/pcb-design-tutorial/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/pcb-design-tutorial/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/wp-content/uploads/2014/11/Microcontroller-tutorial-files.zip
https://www.build-electronic-circuits.com/wp-content/uploads/2014/11/Microcontroller-tutorial-files.zip
https://www.build-electronic-circuits.com/diy-pcb/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 24

www.build-electronic-circuits.com

In my opinion, the easiest way is to use a PCB manufacturer. It takes a
bit of time to wait for your board, but at least everything will be done
properly. This does not have to be expensive. You can order 10 boards
for $10 at some places. And the cheapest shipping option can be as
low as a few dollars.

I ended up ordering my boards from seeedstudio.com. Because I
wanted to get my boards fast to continue the tutorial, I paid for the
fastest shipping option. Hopefully I will get it very soon.

To see exactly how you can prepare an order of cheap PCB prototypes,
check out this video.

Getting Components
A board without components isn’t very interesting. So we need to
get out hands on some components too.

There are many stores that sell components online, check out my
recommendations here.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.seeedstudio.com/fusion_pcb.html?utm_source=build-electronic-circuits.com
https://www.youtube.com/watch?v=LOCDMoJhHkM
https://www.build-electronic-circuits.com/buy-electronic-components/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/buy-electronic-components/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 25

www.build-electronic-circuits.com

Now we just need to sit back and wait for the boards and components
to arrive.

Next Step
In the next part we’ll solder and program the circuit. Then we’ll finally
get to see if the circuit works or not. Let’s hope it does!

If you have any questions about what you’ve learned in this part,
head on over to the following page and write your question in the
comment section:

https://build-electronic-circuits.com/microcontroller-tutorial-part 4

Part Description Value Package
C1 Capacitor 1µF SMD 1206
C2, C3 Capacitor 12-22pF SMD 1206
C4 Capacitor Polarized 10µF Through-hole
JP1 USB Connector USB Type B Receptacle Through-hole
JP2, JP3 Header 8 pin Through-hole
LED1 Light Emitting Diode 1.8V Through-hole
Q1 Crystal 8 MHz SMD C49UP
R1, R2 Resistor 22 Ohm SMD 1206
R3 Resistor 200 Ohm SMD 1206
R4 Resistor 10k Ohm SMD 1206
S1 Momentary Switch Through-hole
U1 Microcontroller ATmega32U2 TQFP-32

Complete Parts List

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/microcontroller-tutorial-part4/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 26

www.build-electronic-circuits.com

Part 5:
Soldering and
Programming
We are now at part 5, the final part of the microcontroller tutorial. Up
until now we have learned:

•	 What a microcontroller is
•	 How to select a microcontroller
•	 How to design a circuit with the microcontroller
•	 How to create a circuit board from our circuit

I have just received the boards I ordered in the previous part, and
today we are going to solder the board and program it.

The finished circuit board

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 27

www.build-electronic-circuits.com

Soldering The Board
To solder the board – I am going to use my old Ersa 30 soldering iron.
The tip of it is a bit big, so it’s really not the ideal tool to use. But it’s
what I have on my desk right now.

And it’s also a way for me to show you that you don’t need any fancy
equipment to make this circuit. You can make this circuit at home.

Because I wanted to put everything on one side, I chose to use
mostly SMD (Surface Mount Device) components when I designed
the circuit board. So to solder this, I’m going to use the techniques
from my smd soldering article.

Soldering the Microcontroller Chip

Since the microcontroller chip was the most difficult thing to solder,
I started out with that one.

First, I added some solder to one corner pad. I placed the chip
carefully, using a pair of tweezers. And I made sure that all the pins
were placed correctly over their pads. Then, while holding the chip
in place with the tweezers, I placed the tip of my soldering iron onto
the pin and pad of the corner where I already added solder –making
the solder melt.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/smd-soldering/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 28

www.build-electronic-circuits.com

I removed the tip, and let the
solder cool for a second. The chip
was in place. Now, all I needed to
do was to apply a bit of solder
onto each of the pins, to make
them stick to the pads on the
board.

This was a clumsy process with
the thick tip of my soldering
iron. But, by keeping my cool
and being patient – I was able
to solder all the pins onto their
pads. As you can see from the
picture, soldering with the large-
tip soldering iron was a bit messy.
But it doesn’t matter, as long as
it works.

Soldering the Other Components

After I’d managed to solder the chip, the other components were
easy. I might not have gotten them perfectly aligned, but it wasn’t
that bad either.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 29

www.build-electronic-circuits.com

Testing the Circuit
The ATmega32U2 chip comes with a pre-programmed boot-loader
that should make it appear as a USB device when plugged into a
computer.

After everything was soldered, I should have inspected the solder
joints closely with a USB Microscope or something. This is smart
because if there are any short-circuits caused by a tiny little solder
blob somewhere, it could damage the circuit.

But I didn’t have one nearby – and I was super excited to see if it
worked. I’m kind of like a child waiting to open my Christmas presents
in this situation. I can’t always make myself do what is smart to do.
I’m just too excited to see if it works.

Instead I just looked extra carefully at the USB pins, to see if they at
least seemed to be properly soldered. Then I plugged it into my USB-
port and…

…nothing happened.

I was a bit disappointed for a brief second. Until I realized that nothing
was supposed to happen. I only had one LED on the circuit, and it was
connected to an IO pin. And at this point there was no code to control
the LED.

So what I needed to check was if it showed up as a USB device on my
computer. And it did! Wohooooo!!

Programming the Microcontroller Circuit

Now that I knew the USB-part was working, it was time to program
the circuit with some code.

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
http://amzn.to/2s9N1z5

Microcontroller Tutorial 30

www.build-electronic-circuits.com

I’ve written about microcontroller programming before.

The process is:

1. Create program code
2. Compile code into machine code
3. Upload machine code onto board

Program code

To make a simple test, I created a blink-LED code. It does nothing
more than blink the LED on the board.
Here is the code I used:

#define F_CPU 1000000 // The chip runs at 1 MHz as default
#include <avr/io.h>
#include <util/delay.h>

int main(void)
{
 DDRC = (1<<PC7); //Sets the direction of the PC7 to output
 PORTC = (1<<PC7); //Sets PC7 high
 while(1)
 {
 _delay_ms(500); //Wait 500 milliseconds
 PORTC &= ~(1<<PC7); //Turn LED off
 _delay_ms(500); //Wait 500 milliseconds
 PORTC |= (1<<PC7); //Turn LED on
 }
 return 0;
}

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/microcontroller-programming/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 31

www.build-electronic-circuits.com

Compile the program

I saved the code in a file called blink-led.c . Then, I used a tool called
avr-gcc to compile the code. Because I am using a Linux machine with
Ubuntu, this is very easy to do (for Windows, check out Win-AVR):

First, install the application by opening a terminal window and typing:

sudo apt-get install avr-gcc

Then you can compile it to machine code by typing in these two
commands:

avr-gcc -mmcu=atmega32u2 -Os blink-led.c -o blink-led.out

avr-objcopy -j .text -j .data -O ihex blink-led.out blink-led.hex

Now you have a file – blink-led.hex – that you can upload to the
microcontroller.

You can find more information on the commands here.

Upload Program Onto Board

To get the program onto the board I used dfu-programmer. To install
it, use the following command (on Ubuntu):

sudo apt-get install dfu-programmer

The first thing to do is to erase the old memory:

sudo dfu-programmer atmega32u2 erase

Then I flashed the microcontroller with the blink-led program:

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://sourceforge.net/projects/winavr/
http://www.nongnu.org/avr-libc/user-manual/group__demo__project.html
https://dfu-programmer.github.io/

Microcontroller Tutorial 32

www.build-electronic-circuits.com

sudo dfu-programmer atmega32u2 flash blink-led.hex

I unplugged it from the USB, then connected it again… And it worked!

To finish this part of the microcontroller tutorial I’ve burned my
fingers, I’ve doubted myself, and I’ve received a surprise bill from the
customs office.

But all in all, I’m very happy with the result. I made it work. And I love
the feeling I get when I make something work!

If you have any questions about what you’ve learned in this part,
head on over to the following page and write your question in the
comment section:

https://build-electronic-circuits.com/microcontroller-tutorial-part5

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://www.build-electronic-circuits.com/microcontroller-tutorial-part5/?utm_source=microcontroller_tutorial&utm_medium=ebook

Microcontroller Tutorial 33

www.build-electronic-circuits.com

Part 6:
Learn to build your own
ideas with electronics
Congratulations, you’ve made it all the way to the end!

If you’re new to electronics, you probably did not understand the
details of how to do everything in the tutorial, and that’s okay. The
fact that you read all the way through means you have the interest
needed to get really good at electronics.

I’m constantly creating new learning material to help people build
their own ideas with electronics. Whether you want to build an
automatic cat door for your house or the next must-have gadget
for the world, there are some steps you need to take to build up the
skills and knowledge necessary to build your own inventions with
electronics.

To help people from all backgrounds learn these steps, I’ve created
Ohmify. It’s an online electronics builders club with lots of courses
and resources to learn electronics such as:

• 25+ courses on skills such as soldering, Arduino programming, basic
electronics and more.

• Step-by-step instructions for cool projects like a robot, music player,
phone charger and the Atari Punk Console

• Forum for discussing ideas, asking questions and getting un-stuck
with your projects.

Learn more about Ohmify here:

https://ohmify.com/join/

https://www.build-electronic-circuits.com/?utm_source=microcontroller_tutorial&utm_medium=ebook
https://ohmify.com/join/?utm_source=ebook&utm_medium=microcontroller_tutorial

